Çarpanlara ayırma
Çarpanlarına Ayırma
A. ORTAK ÇARPAN PARANTEZİNE ALMA
derscalisiyorum.com.tr
En az dört terimi olan ifadeler ortak çarpan parantezine alınacak biçimde gruplandırılır, sonra ortak çarpan parantezine alınır.
B. ÖZDEŞLİKLER
1a). İki Kare Farkı – Toplamı
1) a2 – b2 = (a – b)(a + b)
2) a2 + b2 = (a + b)2 – 2ab
3) a2 + b2 = (a – b)2 + 2ab
2a). İki Küp Farkı – Toplamı
1) a3 – b3 = (a – b)(a2 + ab + b2 )
2) a3 + b3 = (a + b)(a2 – ab + b2 )
3) a3 – b3 = (a – b)3 + 3ab(a – b)
4) a3 + b3 = (a + b)3 – 3ab(a + b)
3a). n. Dereceden Farkı – Toplamı
1) n bir sayma sayısı olmak üzere,
xn – yn = (x – y)(xn – 1 + xn – 2y + xn – 3 y2 + … + xyn – 2 + yn – 1) dir.
2) n bir tek sayma sayısı olmak üzere,
xn + yn = (x + y)(xn – 1 – xn – 2y + xn – 3 y2 – … – xyn – 2 + yn – 1) dir.
4a). Tam Kare İfadeler
1) (a + b)2 = a2 + 2ab + b2
2) (a – b)2 = a2 – 2ab + b2
3) (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)
4) (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc)
n bir tam sayı ve a ¹ b olmak üzere,• (a – b)2n = (b – a)2n• (a – b)2n – 1 = –(b – a)2n – 1 dir.
• (a + b)2 = (a – b)2 + 4ab
5a). (a ± b)n nin Açılımı
Pascal Üçgeni
derscalisiyorum.com.tr
(a + b)n açılımı yapılırken, önce a nın n . kuvvetten başlayarak azalan, b nin 0 dan başlayarak artan kuvvetlerinin çarpımları yazılıp toplanır.
Sonra n nin Paskal üçgenindeki karşılığı bulunarak kat sayılar belirlenir.
(a – b)n yukarıdaki biçimde yapılır ancak b nin; çift kuvvetlerinde terimin önüne (+), tek kuvvetlerinde terimin önüne (–) işareti konulur.
• (a + b)3 = a3 + 3a2b + 3ab2 + b3• (a – b)3 = a3 – 3a2b + 3ab2 – b3• (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4
• (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4
• a4 + a2 + 1 = (a2 + a + 1)(a2 – a + 1)• a4 + 4 = (a2 + 2a + 2)(a2– 2a + 2)• a4 + 4b4 = (a2 + 2ab + 2b2)(a2 – 2ab + 2b2)
a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – ac – bc)
C. ax2 + bx + c BİÇİMİNDEKİ ÜÇ TERİMLİNİN ÇARPANLARA AYRILMASI
ax2 + bx + c ifadesini çarpanlarına ayırırken birkaç yöntem kullanılır. Biz burada ikisini vereceğiz. En iyi öğrendiğiniz yöntemi daima kullanarak pratiklik sağlayınız.
1. YÖNTEM
1. a = 1 için,
b = m + n ve c = m × n olmak üzere,
derscalisiyorum.com.tr
2. a ¹ 1 İken
m × n = a, mp + qn = b ve c = q × p ise
derscalisiyorum.com.tr
ax2 + bx + c = (mx + q) × (nx + p) dir.
2. YÖNTEM
Çarpımı a × c yi,
toplamı b yi veren iki sayı bulunur.
Bulunan sayılar p ve r olsun.
Bu durumda,
derscalisiyorum.com.tr
daki ifade gruplandırılarak çarpanlarına ayrılır.
Hiç yorum yok
Sizleri daha ilerilere taşıyabilmek için burdurdayız